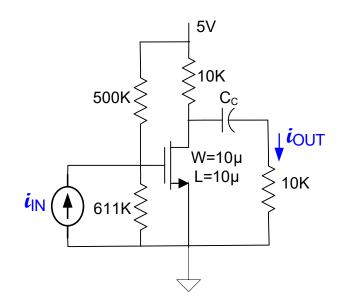
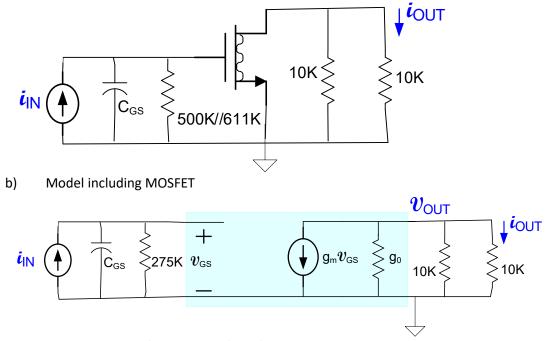
EE 330 Homework 13


Solutions

Problem 1


$$v_{i1} = \frac{1}{v_{qs}} = \frac{1}{v_{qs}} = \frac{1}{q_{qs}} = \frac{1}{q_{qs}} = \frac{1}{q_{qs}}$$

Summing currents on Vo node (with $G_L = \frac{1}{R_L}$)
 $v_0 (sC_L + G_L + g_0) + g_m v_i = 0$
 $\therefore A_v(s) = \frac{1}{v_i} = \frac{-g_m}{sC_L + g_0 + G_L} = \frac{-g_m}{sC_L + G_L}$

Problem 2

As originally posted, the transistor was not biased to operate in the saturation region. A change in the biasing has been made as shown below.

a) Small signal equivalent circuit including C_{GS} capacitor.

Defining $R_B=275K$, $G_B=1/R_B$, and $G_L=1/R_L=1/10K$ and summing currents at input and output nodes obtain equations

$$\begin{split} V_{GS} \left(s C_{GS} + G_{B} \right) &= I_{IN} \\ V_{OUT} \left(g_{o} + G_{L} + G_{L} \right) + g_{m} V_{GS} = 0 \\ V_{OUT} G_{L} &= I_{OUT} \end{split}$$

Eliminating V_{OUT} and V_{GS} from these equations we obtain

$$\frac{I_{OUT}}{I_{IN}} = -\frac{g_{m}}{R_{L}(g_{o} + G_{L} + G_{L})} \frac{1}{sC_{GS} + G_{B}} \simeq -\frac{R_{B}g_{m}/2}{sR_{B}C_{GS} + 1}$$

c) Want to obtain

$$\left|\frac{R_{B}g_{m}/2}{j\omega R_{B}C_{GS}+1}\right| = 1$$

Which can be written as

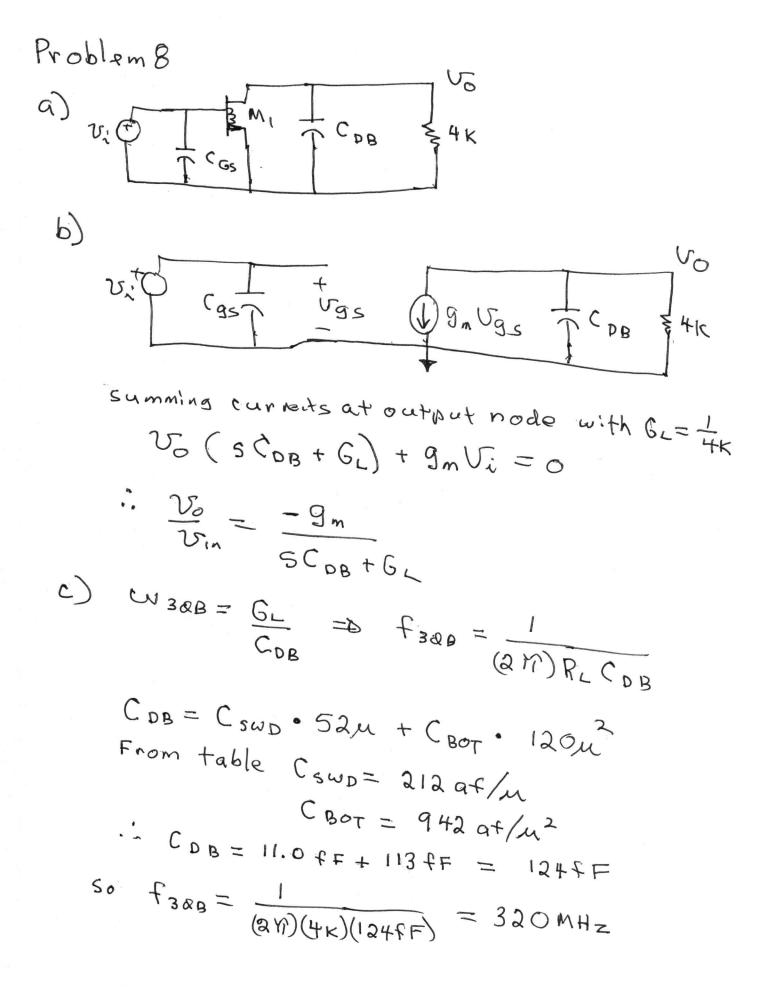
$$\frac{\left(R_{B}g_{m}/2\right)^{2}}{1+\left(\omega R_{B}C_{GS}\right)^{2}}=1$$

Solving for angular frequency $\boldsymbol{\omega}$ we obtain

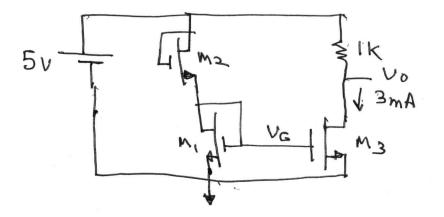
$$\omega = \frac{\sqrt{(R_{B}g_{m}/2)^{2} - 1}}{R_{B}C_{GS}} \approx \frac{g_{m}}{2C_{GS}}$$

It remains to obtain gm and CGS. Observe by voltage divider VGS=2.75V. So

$$g_{m} = \mu C_{OX} \frac{W}{L} \left(V_{GSQ} - V_{TH} \right) = 2E - 4$$


$$C_{GS} = C_{OX}WL = 400 fF$$

So unity gain frequency is 250M rad/sec or 40 MHz.


Problem 3 $I_{D2} = \left(\frac{W_2}{W_1}, \frac{L_1}{L_2}\right)^{I_{D1}} = (3)(50\mu A) = 150\mu A$ Vo = 8V - Io2 · R = 8V - (150 MA) (25K) = 4.25V Problem 4 From Lecture Notes Av = - 9mi of = UAFB So Av 2 - 200 . 100 = - 400,000 Problem 5 Define $G_L = \frac{1}{R_1} = \frac{1}{1 \text{ kr}}$ Observe this is a cascade of two cc stages a) $\frac{1}{R_{in2}} = \frac{G_L}{B_2}$ $\frac{V_A}{V_{in}} = \frac{+9m_i}{9m_i}$ $\frac{M_A}{V_{in}} = \frac{+9m_i}{9m_i}$ $A_{v} = \left(\frac{g_{m2}}{g_{m2}+G_{L}}\right) \left(\frac{g_{m1}}{g_{m1}} + \frac{G_{L}}{G_{L}}\right)^{2} I$ b) $V_{inq} = 00$, $V_{oq} = V_{inq} = 0.6 + 0.6 = 0V$ c) $R_{in} = \Gamma_{ii} + \beta_i R_{in2} = \Gamma_{ii} + \beta_i \beta_2 R_L \simeq \beta_i \beta_2 R_L$ d) IF current sources ideal JOMAX = VCC Vomin = VEE + 0.6V

Problem 6 Define
$$G_{L} = \frac{1}{R_{L}} = \frac{1}{1 \text{ KL}}$$

a)
 $V_{in} = \frac{1}{R_{L}} = \frac{1}{1 \text{ KL}}$
From KCL
 $V_{or}(g_{o_{1}}+G_{L})+g_{m_{2}}V_{A} = g_{m_{1}}(V_{in}-V_{ol})+g_{ol}V_{A}$
 $V_{A} = V_{ol} - \frac{g_{m_{1}}}{g_{ol}}(V_{in}-V_{ol}) + g_{ol}V_{A}$
 $V_{A} = V_{ol} - \frac{g_{m_{1}}}{g_{ol}}(V_{in}-V_{ol})$
 $elimin_{ching} V_{A}$ obtain
 $\frac{V_{ol}}{V_{in}} = \frac{g_{m_{1}}g_{ol}+g_{m_{2}}g_{m_{2}}}{g_{ol}[g_{m_{2}}+G_{L}]+g_{m_{1}}g_{m_{2}}} = \frac{g_{m_{1}}g_{m_{2}}}{g_{m_{1}}g_{m_{2}}}$
 $v_{m}^{+} \int \frac{V_{ol}}{V_{in}} = \frac{g_{m_{1}}g_{m_{1}}+g_{m_{1}}g_{m_{2}}}{V_{in}} = \frac{g_{m_{1}}g_{m_{1}}}{g_{m_{1}}+G_{L}}$
b)
 $\frac{V_{ol}}{V_{in}} = 1$ to find $\frac{V_{o2}}{2V_{m}}$, need $g_{m_{1}}$. First obtain I_{DQ}
 $I_{DQ} = M \frac{C_{K}w}{2U} (V_{inQ} - T_{DR} - V_{TH})^{2}$
solving this equation for $I_{O_{1}}$ obtain
thus $I_{DQ} = 10$ and $\Rightarrow g_{m} = \sqrt{M(o_{2}W a_{2}I_{DQ})} = 1E-4$

C) Need to reduce
$$I_{01} = 5\mu A_{1}$$
, $I_{02} = 10\mu A$
For circuit on left
 $I_{02} = \mu (O_{10} \cup (V_{1NQ} - V_{0Q} - V_{14})^{2}$
 $I_{0,\mu}A = (E-4) (I_{0}) (I_{V} - V_{0Q} - .15V)^{2}$
solving, obtain $V_{0Q} = 50 \text{ mV}$
For circuit on right, found in part b), $I_{0Q} = 10\mu A$
 $\therefore U_{0Q} = (I_{0,\mu}A)(5K) = 50 \text{ mV}$
d) For $V_{1NQ} = 4V_{3}$ circuit on left has
 $V_{0Q} = 3.05 \text{ V}$
For circuit on right, must again solve
 $I_{00} = \mu (O_{10} \cup (V_{10}Q - I_{00}R - V_{14})^{2}$ for I_{0Q}
with $V_{10Q} = 4V_{3}$ obtain $I_{0Q} = 0.4mA$
so $V_{0Q} = (I_{0Q})(5K) = 2V$
Problem 7 From Lecture SIIdes
 $A_{V} = -\frac{3mi}{g_{01}} = -\frac{I_{CQ}}{V_{0Q}} = \frac{V_{0Q}}{V_{0Q}} = -4000$

Problem 9 One solution

Since Vo = 2V, want VG < 2V+VrH to maintain saturation of M3. So will set VG = 2V $I_{D3} = \mu (o_{k} \omega) (2 - .75)$ $3E-3 = (E-4) - (1.25)^{2}$ $\frac{1}{L_3} = 38$. Let $L_3 = lm$, $w_3 = 38m$ Let $W_i = 38$ so unity minnor gain Let $L_i = 1$, $W_i = 38$, W $I_{01} = 3mA$ Consider now M2. which also has ID = 3mA $3mA = M for W_2 \left(5 - V_G - V_{TH} \right)^2$ 3 = (E-4) = (5-2-.15)Solving